
The symmetry and some exact solutions of the nonlinear many-dimensional Liouville,

d'Alembert and eikonal equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 3645

(http://iopscience.iop.org/0305-4470/16/15/030)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 3645-3656. Printed in Great Britain 
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Abstract. Multiparametrical exact solutions of the many-dimensional nonlinear d’Alem- 
bert, Liouville, sine-Gordon and eikonal equations are obtained. The maximally extensive 
local invariance groups of the equations are determined and invariants of the extended 
Poincart group are found. 

1. Introduction 

In  1881 Sophus Lie propounded to use the groups of continuous transformations for 
finding the exact solutions of partial differential equations (PDE). Later on many 
authors exploited Lie’s ideas to study PDE of mechanics and physics (see Ames (1965), 
Bluman and Cole (1974) where a vast bibliography is cited and the historical aspects 
are discussed). 

The classical work of Birkhoff (1950) is devoted to the construction of the exact 
solutions of nonlinear hydrodynamics equations with the help of Lie’s methods. 
Birkhoff (1950) was the first to formulate the group method to obtain similarity 
(automodel) solutions of PDE. Many of the exact solutions have been obtained mainly 
for two-dimensional PDE. Lately Ovsyannikov’s book (1978) has dealt with the modern 
development of Lie’s theory. Ovsyannikov formulated the method of finding the partly 
invariant solutions of PDE. To find such solutions one has to enumerate all the 
non-equivalent subgroups of the PDE invariance group. It is a very complicated 
problem. For example, the five-dimensional d’Alembert equation invariance group 
has more than 500 subgroups. Hence it is natural to seek more effective approaches 
for obtaining the exact solutions of many-dimensional PDE admitting a wide invariance 
group. 

The main ideas we use in our work are closely connected with those of Birkhoff 
(1950) and Morgan (1952). The aim of our paper is to find the exact solutions of 
the following nonlinear PDE widely used in mathematical and theoretical physics: 

p,$% + A  exp U = 0, (1.1) 

nu + A u k  = 0, (1.2) 

pwup”u = 0, (1.3) 
where pF = igN””8/8x,, g,, is the metric tensor with the signature (+l, -1, , . . , -l), 
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2 2  p w p w  = -8 /axo +-=-U, U = u ( x ) ,  x = ( x o , x l , ,  . . , x ~ - ~ ) ,  A ,  k are arbitrary real 
constants. We use the summation convention for the repeated indices. 

Equation (1.2) plays a special role in the quantum field theory when k = 3 and 
x = (xu, . , . , xg): its solutions may be used to construct some solutions of the Yang-Mills 
equation by virtue of the ’tHooft-Corrigan-Wilczek ansatz (see Actor 1979). 

For the solutions of (1.1)-(1.3) we adopt the ansatz suggested by Fushchich (1981): 

(1.4) 

where q ( w )  is an unknown function of the new variables w = w ( x ) =  
{wl(x), . . . , W ~ - ~ ( X ) } ,  the number of which is one less than the number of variables 
x = (xo, . . . , x ~ - ~ ) .  The new variables w(x) and the functionsf(x), g(x)  are determined 
from the Lagrange equations 

U (x = v ( w  )fb 1 + g(x 1 

where 5” and 77 are the functions from the infinitesimal invariance transformations 

x: =x,+&y(x, U ) + 0 ( E 2 ) ,  u ’ = u + & q ( X ,  U ) + O ( E 2 ) .  (1.6) 

5” =5”(x ) ,  77 = a (x)u + b (x), (1.7) 

If 5” and 77 have the form 

i t  implies (1.4). 

often rather easy to solve. 
Having substituted (1.4) into (l.lk(1.3) one obtains equations for ~ ( w )  which are 

2. The group properties of (1.1)-(1.3) 

It is evident from the above, that to find the new variables w(x) and the functions 
f ( x )  and g(x)  i t  is necessary to know the functions (@(x)  and ~ ( x ,  U )  explicitly. Hence 
we shall study the group properties of (1,1)-(1.3). 

Theorem 1. Equation (1.1) is invariant under the PoincarC group P( 1, n - 1) and under 
the scale transformation group 9(1). The basis elements of the corresponding Lie 
algebra p(1, n - 1) ={P(l, n - l), 9(l)} have to form 

Theorem 2. Equation (1.2) is invariant under the extended PoincarC group p(1, n - l), 
with basis elements of its Lie algebra having the form 

a 2i a 
p ,  = igFU- 4,” = X,P” -xIJp,, 9 = X u p ” + - - - U - - - .  

ax, ’ 1-k au  

Theorem 3. Equation (1.3) admits the infinite-dimensional invariance group. The 
infinitesimal operator of this group is as follows (we use Ovsyannikov’s (1978) nota- 
tions): 

x = 5” (x, U )a/ax, + 77 (x, U )a/au, 

t7 =77(u), (2.3) 6” = -6, (U )X,X ” + 2x,b, (U )X ” + c,” (U )X ” + d ,  (U ), 
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where b,, c,", d,, 7 are arbitrary real functions of U and cOa = C,O, Cab = -cba,  C O O  = c1 1 = 
. .  . - ~ ~ - ~ ~ - ~ ; a , b  = l , n - l .  - 

Theorem 4 .  The equation 

ou + F i x ,  U )  = 0 (2.4) 

is invariant under the extended PoincarC group if and only i f  

F ( x ,  U )  = A exp U ,  (2.5) 

or 

F ( x , u ) = A z u k ,  

where A l ,  A 2 ,  k are arbitrary constants, k # 1; the infinitesimal generators are given 
in (2.1) and (2.2) respectively. 

To prove these theorems one can use the Lie algorithm following e.g. Ovsyannikov 
(1978). One can make sure that (2.4) with nonlinearities (2.5), (2.6) is invariant under 
the group p(1, n - 1) using final invariance transformations. 

Note 1. Theorem 4 implies that there is only one equation of the form (2.4) with 
non-polynomial nonlinearity invariant under F( 1, n - l ) ,  and it is the Liouville equation. 

Note 2.  If n = 2, equation (1.1) admits the infinite-dimensional Lie group with the 
generator X = (5"a/ax,+(5"a/ax I + q a / a u ,  where 

to = f ( x o  + x 1) + g(x0 - x l ) ,  

7 = c 2  - at0 /axO,  

= f ( x o + x  1) - g(xo-x1)  + C l ,  
(2.7) 

f and g are arbitrary differentiable functions, c1, c 2  are constants. 

Note 3. Equation (1.2) with n = 2 and A = 0 is invariant under the infinite-dimensional 
Lie group, as it  takes place for the Liouville equation. The two-dimensional equation 
of gas dynamics has the same properties (see Fuschchich and Serova (1983)). 
Apparently this property gives the possibility of finding the general solution of the 
equations mentioned above. 

3. The group p(1,2) invariants 

The question of finding of the invariants w ( x )  is connected with the integration of 
the Lagrange system (1.5). Generally speaking, equations (1.5) have infinitely many 
solutions according to the various functions (5'". Ovsyannikov (1978) has proposed to 
enumerate all the non-conjugate subgroups of the equations invariance group and to 
integrate the system (1.5) for each subgroup. This way, as was previously mentioned, 
is connected with the algebraic difficulties. 

In this section we shall show the particular case of the group (1.6) for which the 
system (1.5) is usually integrated. 

Many fundamental equations of mathematical and theoretical physics are invariant 
under the group 4GL(n, R )  of inhomogeneous linear transformations of n-dimensional 
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Minkowski space or under its subgroups, e.g. the Lorentz group, the PoincarC group, 
the Galilei group etc. 

It is well known that the functions 6 ,  for this group have the form 

6” = c , ~ ”  +d,, p = o , n - 1 ,  (3.1) 

where c,, and d, are arbitrary constants. 
Let us introduce the notations 

Using (3.1) and (3.2) one can write down the system (1.5) in the form 

x, =c,j”+d, ,  p = O , n - 1 .  (3.3) 

Equation (3.3) is a system of ordinary differential equations with constant coefficients 
and it  is well known how to find its general solution. After doing this one has to 
eliinate the parameter to obtain the invariants w (x). 

If (1.1)-(1.3) are invariant under the group f‘(1, n - l), which is a subgroup of 
$GL(n, R ) ,  we shall consider the determination of f’(1, n - 1) invariants in detail. For 
simplicity we put n = 3. According to the conditions between the coefficients c,, and 
d ,  in (3.1) we have obtained the following independent solutions of the system (1.5). 

(1) 0 1  =aYYY(PYYY)a, w2 = Y Y Y  ” ( P Y Y  T2,  

(2) w 1  = ~ u y Y ~ a Y y Y ~ ~ l + ~ n a , y Y ,  W 2 = Y ” Y ” ( ~ Y Y Y ) - 2 ,  

where a#” =adY = 0, P$”  = b f 0. 

where a,a” =a$” = 0, @$” = b ZO 

(3) w1  = I n a , y ”  + b l  tan-’[yVy”(Pvy”)-’], w2 = Y”Y Y(a”Y T2, 
where a# ” = b2 # 0, P$ ” = yYy ” = b3 f 0, a$ ” = ayy ” = PYy ” = 0, (PYy ”1’ + (yyy ”1’ = 
b3(aJ”)-2(1 - 6 2 ~ 2 ) .  

(4) w1 = a,y ” +In &yY, w2 = Y Y Z  “ ( P Y Y  T2, 
where a#” =a$’ = P y y y  = yyyY = 0 ,  a,y” = 61 f 0, P$”=b2fO.  

( 5 )  w 1 =  ( P Y Y  ” ) * + Y y Y Y ,  w2 = PYy ” + a In a,y ”, 

where a# ” = a$’ = 0, P$ ” = - 1. 

(6) w1 = ( P Y Y  - Y Y Y  ”9 w 2  =pYyy + a  tan-l[yyyY(a,yY)-l], 

where away  = y y y Y  = b  f 0 ,  P$“  = 1, a$” =a,yy = P y y y  = 0, ( c ~ ~ y ” ) ~ + (  yYy”)’= bwl .  

(7) w1 = 4(a”y”)2+aP”YY, w2 = t ( a ” y Y ) 3 + a a u y u ~ y y Y  +a2y,y”, 

where a#” =a$’’ = Pyyu = 0, a,y” = -P$” = yyyy = b f 0. 
Y (8) w l = a u x ,  w2 = x,x ”, a,aY = b f 0. 

(9) w1= ( P Y Y  ” ) ( a v Y  T’, w2 = Y Y Y  ” b ” Y  T1, 
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where agt” = a l l ,  a,@’ = a l 2 . .  . , yyy ”  = a 3 ) .  

(10) w1 = a J Y ,  w2=PVxY, 

where ava = - p u p y  = 1, a,p = 0. 
In these formulae y y  = x, +a, ,  z ,  = x, +fa,, a”, a,, p,, y,, a, b, bk, a i k  are constants 
connected with the group parameters c,, and d,. 

To find f and g from (1.4) it is sufficient to integrate the equation 

(du)/v = dt. (3.4) 

u(x)=cp(w)+g(x),  (3.5) 

u ( x )  = cP(w)f(x), (3.6) 

u ( x ) = w P ( w ) + g ( x ) ) ,  (3.7) 

(3.4) yields 

for ( l . l ) ,  (1.2), (1.3) respectively. Here is an arbitrary differentiable function. 
The formulae (2.1)-(2.3) yield 

g(x) = -2 In +(x) 

f (x )  = [$(X)]2’(1-k) for (1.2), (3.8) 

g(x) = In 9 ( x )  

for (1. l), 

for (1.3). 

Below we present the explicit form of $(x): 

(1) = P Y Y  ” 3  (2) 4(x 1 = a,y (3) 4 (x )=a ,y” ,  

(4) 9 (x) = P Y Y  ”, (9) 9(x) = a u y ” .  

In  the other cases $(x) = 1. 

4. The exact solutions of the Liouville equation 
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(8 1 bcp + 4w ]cp i 2  + 4 ~ 2 ~ 2 2  + bcp2 + A exp cp = 0. 

(9) ( a l l w  1 - 2a 12w 1 + u22)cp 11 + 2(Ull w 1w2 -u13w1- u12w2 + u23)q12  

(4.8) 
2 

+ (a  11 w : - U  13w2 4- u33)(p22 + 2(a 11 w 1 - U  I2)cp  1 + 2(a 11w2 - U 13)P2 

+2a11+A expcp = O .  (4.9) 

(10) cpI1-cpz2+A expcp = O .  (4.10) 

If one obtains at least one particular solution of any of equations (4.1)-(4.10), 
then (3.5) gives a solution of (1.1). Let us consider, (4.1) and (4.10) as an example. 
If one supposes that acp/aw2=0 then (4.1) is reduced to the ordinary differential 
equation for the function cp : 

(4.1 1) a2w I c p  + a  (a - l ) w  l cp l  + 2 + A  exp cp = 0, 

the general solution of which has the form 

-2 ln[(-A/2b~:)'/~w;"" sinh(c1w:'" +c2)], 
-2 ln[(A/26~:)'/~w;''" cosh(clw:'2 +cz)],  
-2 ln[(-h/2bc:)"2w;'/" COS(CIW : la  +c2)1, 

Ab < O ,  
Ab > O ,  
Ab < O ,  
A@ > 0. 2 1/2 i -2 ln[(-A/2bcl) w ; l / " ( w : / "  +c2)], 

c p ( W 1 )  = 

Hence from (3.5) and (4.12) one obtains the solution of (1.1) 

(4.12) 

U = -2 ln[yP(x) s inh(cIQ(x)+c~~1,  

U = -2 ln[yP(x) cos(c1Q(x)+c2)], 

U = -2 ln[SP(x) cosh(clQ(x)+cz)l, 

U = -2 ln[yP(x) (Q(x)+c~)I ,  
(4.13) 

where P ( x )  = (Ly,y"j-l'", Q ( ~ ) = @ ~ y ~ ( c u . y " ) ' / ~ ,  y 2 = -8 2 = -A/2bc1. 2 

Equation (4.10) is the two-dimensional Liouville equation. Its general solution 
was found by Liouville (1853): 

(4.14) 

where f l  and fz are arbitrary differentiable functions. 

Note. The two-dimensional Liouville equation can be solved in other ways, e.g. with 
the help of the theory of complex variables. But we believe the simplest way is to 
linearise the Liouville equation. Fushchich and Tichinin (1982), using non-local 
substitutions 

l - t a n h 2 y ) ] ,  5=xo+x1,  77 =xo-x1, 

or 
U = I ~ [ ~ w , w , , / ( w + c ~ ) ~ ] ,  

or 

U = I n  W,W, I +tanz- E (  J2 
reduce the Liouville equation to 0 W = 0, the general solution of which was obtained 
by d'Alembert. Using those formulae we obtain the Liouville solution (4.14). 
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From (3.5) and (4.14) one  obtains a solution of (1.1): 

(4.15) 

where y y y ”  = S,6” = 0, y y y ”  = 2. 
The  other solutions of (1.1) we have obtained have the form (4.13) with 

(a) ~ ( x )  = F-’(~,Y ”), Q(x)  = PYy ”F(ayy  ”), 

(6) P ( x )  = F - l ( a y y Y ) ,  Q(x) = P Y ~ Y F ( a y ~ Y ) - ~ ~ ~ ( ~ Y ~ Y ) ,  

(c) P ( x )  = ( Y Y Y ” ,  Q(x) = (yYy Y)1’2(aY~ ”)-I ,  

(e) P ( x ) =  1, Q(x) =PYyy + a  In a Y y ” ,  

( f )  P ( x )  = 1. Q ( x ) = P Y ~ ’ ,  
(g) P ( x ) =  1, Q (x 1 = P ”Y + F(aVy ”), 

(d) P(x)=wI ,  Q(x) = In  W I ,  w1=(P,Yy)2+Y”Yy, 

where F is an arbitrary differentiable function, a,a” = a,P” = 0, P y @ ”  = b # 0. 
Besides, from (4.8) we have the particular solution of (1.1) in the form 

u ( x )  = -ln(:Axj”). (4.16) 

We have obtained the solutions of (1.1) when n = 3 and they are easily generalised 
to more general cases n 34. For n 2 4  some solutions of (1.1) may be obtained in 
an analogous way, integrating (1.5) and determining the invariants w (x). 

5. The exact solutions of the nonlinear d’Alembert equation 
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(8) b q i i  +4wlq12 +4wzq22 + bq2 + A q k  = 0. (5.8) 

(9) (a11 w: - 2a12w 1 +a22)q11+ 2(Ull W l W 2  - u 1 3 W 1  -u12w2 + U 2 3 ) q 1 2  

+(allw: -2a,3w2+a33)q22+2(k + l ) (k  - l)-’[(allwl-a12)ql 
+(~11~2-al3)cpz]+2all(k + I)(& - 1)-2q + A q k  = O .  ( 5 . 9 )  

(10) q 1 1 - q 2 2 + M k  = O .  (5.10) 

Equation (5.1) when a q / a w 2  = 0 becomes the Emden-Fowler one  

t2 V,, + 25V, + (A/b)lk’’ Vk = 0 (5.1 1) 

via the substitution 
= t ( k + l ) / ( k - l )  V ( tL  6 = w y a .  (5.12) 

W e  have found some particular solutions of (5.2)-(5.10) and then we have the 

(5.13) 
following solutions of (1.2): 

2 / (1 -k )  
U = [pyy” + a y y  ” ( C Z  + In a ,y  ”11 

where a,a” =a,@” = 0, pvp“ = b = -$A (1 -k)2/(1 + k ) .  
(5.14) 

(5.15) 

where pVp” = -1. 

(5.16) U = { c z * ( l - k ) [ ~ A ( 1 + k ) - ’ ] ’ ~ 2 ( p , y ” + a  Ina,y”)} 2 / (1 -k )  , 

where a , ~ ”  =aVp‘ = 0, pVp” = -1. 
(5.17) 

From (5.13)-(5.17) one  can see that all the solutions of (1.2) obtained have the  form 
(5.18) 

U =[C2+(2a)-’(a”Y”)2+P”Y U 1 2/(1-&) 1 

where a,a” = a,p ” = 0, pyp” = -&(l -k)2/(1 + k ) .  

U = [F(y 1 + G(z  )I“, 
where a takes the values 1/(1 - k )  and 2/(1 -k), and 

y = ( y  1 , * . ‘ ? Y  n-1 ), z = (z 1 , . . . , zn-l) ,  Y “  = y “ ( x ) ,  Z ”  = z “ ( x ) ,  

a = l , n  -1, 

of (5.18) in (1.2) leads to  the equation for the functions F, G, y“ ,  2” :  

x ER,. 

If one  searches for the solutions of (1.2) in the form (5.18), then the substitution 

(a  - 1)A,A” + (F + G)(Fabyty bF + GabZtZ bF +Faay “ +Gauz“ )  

+ (A/a)(F + G)a(k-1)+2 - - 0,  (5.19) 

where 

A, =Fay: + GaZir 
Fa = aF/ay ”, 
G, = a c / a z  ”, 
y: = ay  “/axr, 

p =O,n-1, 

F a b  = a2F/ayaay  b,  a ,b  = 1,n -1, 

Gab = a2G/az “a2 b ,  

Z; =a2 “/ax,, 
a, b = 1, n - 1, 

a, b = 1, n - 1, p =O,n-1. 

(5.20) 
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Below we list some particular solutions of (5 .19) :  

G ( z )  = z ‘2 ’, y 1 =a,x” ,  z 1 = p y x y ,  
Y = p u p u =  yyy”  =o,  

(a) F ( Y ) = ( y 1 + c ) 2 ,  

a = l / ( l - k ) ,  a d ”  = avy”  
2 

z = Y J  , 

2 ~ , ( ~ “ = p , y ~ = A ( k - l ) ~ ( k - 3 ) - ~ ,  x = b o , .  1 . , X f l - l ) ,  n 3 3 .  
1 1  

(b) F ( Y )  = Y 2 d Y  l ) ,  G ( z )  = z 2 4 ( z 1 ) ,  y = z  =ayTY, 

a = 2 / ( 1 - k ) ,  2 
y =PYX”, z = y u x  , 

where rp and 4 are arbitrary differentiable functions, satisfying the condition 

r p 2 + J / 2 = i A ( k - 1 ) 2 / ( k + l ) ,  (5 .21 )  

a”a” =a,p’ = a , y ” = P , y ” = 0 ,  P ” P ”  = YYY” = -1 ,  n 3 3 .  

(c) F ( y )  =F(y ’ )  is an arbitrary differentiable function, 
1 Y 1 G ( z )  = zl, y = a , x  , z = p y x y ,  a,a” =av@” = 0, 

p v P ” = - $ A ( k - 1 ) 2 / ( k + 1 ) .  

So according to (5 .18)  we have the following solutions of (1 .2) .  

U = [ (a ,x”  + c ) 2 + p , x Y y , X u ] 1 ’ ~ 1 - k ) ,  (5 .22 )  

w h e r e a , p “ = a , y “ = p y p u =  y y y Y = O ,  2 a , a ” = p , ~ ” = A ( k - l ) ~ / ( k - 3 ) ,  k 2 3 .  

U = [ ~ ” X Y c p ( a Y X Y ~ + Y Y X Y I C / ~ a y X ” ~ 1 2 ’ ~ 1 - k ~  (5 .23 )  
wherea.a” = a Y p y  = a v y  ” = pY y ” = 0, pVp ” = y y  y ” = - 1 ,  cp + IC/ = $A ( k  - l ) ’ / ( k  + l ) ,  
k # - 1 .  

U = [ F ( a , x  ”) + p y x  u ] 2 1 ’ 1 - k )  (5 .24)  

where a,a ” = a,@ ” = 0, PUP ” = - ;A ( 1  - k I* / (  1 + k ), k # - 1. If in (5.23)-(5.24)  cp, 4, F 
are arbitrary functions we have the wide class of exact solutions of (1 .2) .  

Ibragimov ( 1 9 7 2 )  established that if k = ( n  + 2 ) / ( n  -21, n 2 3  (1 .2 )  is conformally 
invariant. It is well known that the conformal transformations have the form (see e.g. 
Fushchich and Nikitin 1983)  

(5 .25 )  

where U = ( 1  + 2c,x” +c,,c*x,x ”1, c, are constants. Using (5 .25 )  one can produce new 
solutions of the equation 

(5 .26 )  

- 1  l n - 2 1 1 2  
X I  = U  ( x ,  +C,X,X”), u t = ( +  U ,  

nu + A U ( n + 2 ) l l n - 2 )  = 0. 

in such a way. Let U = F ( x )  be a solution of (5 .26 )  for n 2 3 ;  then 

U =u”””F((x +CX,X’)/U), (5 .27)  
where c = (co,. . . , c “ - ~ ) ,  will be another solution of ( 5 . 2 6 )  and 

1. (5 .28)  nu + A U ( n + 2 ) / ( n - 2 )  - ( n ~ 2 ) / 2  (OF + AF<“+2)/(”-2) 
= f f  

When n = 4, equation (5 .26 )  has the form 

Ou +Au3 = 0.  (5 .29 )  
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Its particular solutions are given in (5.15)-(5.17), (5.23)-(5.24). These expressions 
give the solutions of Yang-Mills equations after using the ’t Hooft-Corrigan-Wilczek 
ansatz. 

In  the conclusion of this section we consider another nonlinear d’Alembert equation 

Ou + A  sin U = 0, A = 1, (5.30) 

which is known as a sine-Gordon equation. Below we present some exact solutions 
of this equation 

(5.31) U = 4 tan-’{exp[f(avx ” )  + p y x  ”I}, 
(5.32) 

wherefis an arbitrary differentiable function, a”,  p y ,  k are constants, a,a“ = a , p w  = 0, 
pwpw = -1. 

6. The exact solutions of the eikonal equation 

The eikonal equation (1.3) is one of the main equations of geometrical optics and it 
is the characteristic equation for the linear d’Alembert one. In this section we shall 
find some exact solutions of (1.3) by analogy with that done in the previous sections 
and show how to generate new solutions using the conformal transformations. Upon 
substituting (3.7) into (1.3) we obtain some PDE for the function q ( w )  and we have 
solved some of them. 

Below we present the final result: 

where Q, is an arbitrary differentiable function, y y  = x, fa,,, a,, p,, a,, a are constants, 

One can see from (2.3) that (1.3) is conformally invariant, the conformal transfor- 

(6.4) 

a,a” = 0, pYp” = a  f 0. 

mations being as follows: 
-1 

X I  = U  (x, +C,XAU), U ’ =  U, 

where U is from (5.25). The new solutions U,,, have the form 

(6.5) 
( X I  - 

u n e w  - U o l d ( ( X  +cxAx”)/fl) .  

In conclusion we formulate the following statement. 

Theorem 5. The equation 

P,UP@’U = F ( u ) ,  CL = 0, n - 1, 

is reduced to the form 

p,Vp”V = 1, p = O , n - l  
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by the substitution 

du ” = I (F(u))”’ 

Note. Equation (6 .7)  upon substituting 

W ( x ,  vi = 0 (6.9) 

takes the form 
~ 

pyWp“W = 0 ,  v = 0 ,  n ,  (6.10) 

where W = W G ) ,  x’ = (xo, . . . , x , - ~ ,  x ,  = V ) .  Equation (6.10) is the eikonal equation 
(1.3) in ( n  + lkdimensional space. With the help of ansatz (1.4), we have obtained 
multiparametrical exact solutions of many-dimensional nonlinear Schrodinger (Fush- 
chich and Moskaliuk 1981), Born-Infeld (Fushchich and Serov 1982) and Dirac 
equations (Fushchich and Shtelen 1983). 
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Appendix. The reduction of (1.1)-( 1.2) to ordinary differential equations 

If the function cp from the ansatz (1.4) depends on one variable w only i t  means that 
(1.1)-(1.2) are ordinary differential ones. 

The Liouville equation (1.1) is reduced to the equation 

w,wycp”+Ow(p’+Og+A expg expcp = 0 ,  

via the  substitution (3.5) i f  the conditions 

w,w = d l ( w  1 exp g, 

are satisfied. 

O w  = 4 d w )  exp g, Og = $ A w l  exp g, 

The equation (1.2) will be reduced to the ordinary differential equation 

w ,.w “fcp ” + (0 wf + 2 w ” f ” ) c p  ’ + of 1 (p + A f k ( p  = 0 

under the conditions 

w,w” = &(w)fk-- l ,  Owf+ 2wvf” = $2(W)fk ,  Of = $ 3 ( W l f k .  

The ansatz (1.4) in  this case has the form (3.6). 
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